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1. Introduction

The exploration of electroweak symmetry breaking will be one of the main tasks at the

Large Hadron Collider (LHC). Experiments are expected to either verify the Higgs mech-

anism of the Standard Model (SM), or to detect signals of physics beyond the SM. The

concept of supersymmetry [1, 2] provides a promising alternative version of the Higgs

mechanism where symmetry breaking occurs without introducing new scalar couplings

that potentially can become strong, thus stabilizing the electroweak scale. The realization

of supersymmetry in terms of the Minimal Supersymmetric Standard Model (MSSM) [3 –

5], has come up as the most promising extension of the SM, a predictive framework that

allows to make precise predictions to be investigated by indirect and direct experimental
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studies. The indirect access through virtual effects in electroweak precision data [6] pro-

vides an overall fit [7, 8] with a quality at least as good as in the SM, in specific observables

like g− 2 of the muon [9, 10] even better, and yields bounds on the light Higgs boson mass

with less tension than in the SM [11 – 13].

If supersymmetry (SUSY) is realized at the TeV scale or below, it will be accessible

to direct experimental studies at the LHC through the production of SUSY particles. In

particular, colored particles like squarks and gluinos will be copiously produced, and the

hadronic production of squark– anti-squark pairs is expected to play an important role for

SUSY hunting. The cross section is in the range from 0.5 to 10 pb for masses of squarks

and gluinos below 1 TeV and can be measured with a statistical uncertainty of the order

of a few percent even in the low luminosity regime. Moreover, squark cascade decays into

qχ̃0
1 lead to a signature with missing ET plus jets and possibly leptons that is well suited

to detect MSSM signals [14, 15]. The number of hard jets allows the distinction between

gluino and squark decays. Finally with the help of decay chains one can reconstruct the

mass of the squarks up to 2TeV with a resolution better than 10 % [16 – 18].

The first prediction of the cross section for hadronic production of squark pairs in

the early 1980’s was done at lowest order O(α2
s) in supersymmetric QCD [19 – 23]. QCD

contributions at NLO, O(α3
s), for the processes PP → Q̃aQ̃b∗X, PP → Q̃aQ̃bX (Q 6= t)

were calculated more than ten years later [24, 25]. They increase the cross section by

typically 20 to 30 %, and they substantially reduce the dependence on the factorization

and renormalization scale. NLO QCD corrections to the production of top-squark pairs,

performed in [26], are also positive and can increase the cross section by 40–50%.

Besides the QCD-based production mechanisms, there are also partonic processes of

electroweak origin, like diagonal and non-diagonal squark pair production from qq̄ annihi-

lation [27, 28]. They proceed through s-channel photon and Z exchange, and also through

neutralino/chargino exchange in the t-channel (if Q̃ is different from t̃), yielding terms of

O(α2) and O(αsα). Due to interference between the tree-level QCD and electroweak am-

plitudes for Q̃ 6= t̃, the electroweak contributions can also become sizable, reaching values

up to 20% [27].

For reliable predictions, electroweak contributions at NLO have to be taken into ac-

count as well. In the case of top-squark pair production [29 – 31], they were found to be

significant, with effects up to 20%. In general, NLO electroweak (EW) contributions consist

of loop contributions to the tree-level amplitudes for qq̄ annihilation and gluon fusion, to-

gether with real photon and gluon bremsstrahlung processes, yielding an involved struture

of interference terms in qq̄ annihilation. Moreover, photon–gluon induced parton processes

also contribute owing to the non-zero photon distribution in the proton. In this paper

we present the NLO electroweak contributions, of O(α2
sα), to the production of diagonal

squark–anti-squark pairs different from top- and bottom-squarks,

P P → Q̃a Q̃a∗ X (Q̃ 6= t̃, b̃) . (1.1)

They show significant differences to top-squark production, based on the following pecu-

larities.
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• In leading order O(α2
s), the squark pair Q̃a Q̃a∗ can be produced via annhilation

of a Q Q pair through amplitudes that involve also the exchange of a gluino in the

t-channel, thus enhancing the relative weight of the annihilation channel in (1.1).

• Electroweak tree diagrams with t-channel neutralino and chargino exchange are part

of the amplitudes for Q Q → Q̃aQ̃a∗ and Q′ Q′ → Q̃aQ̃a∗, where Q′ is the isospin

partner of Q in a quark doublet, yielding EW–QCD interference already at the tree-

level.

• At O(α2
sα) many types of interferences occur between amplitudes of O(αsα) and

O(αs) as well as between O(α2
s) and O(α) amplitudes.

These features make the calculation of the EW contributions of O(α2
sα) to the pro-

cesses (1.1) more involved than in the case of t̃ t̃∗ production where no t-channel diagrams

occur at lowest order. Our analysis shows that the EW effects of NLO can reach the same

size as the tree-level EW contributions of O(αsα) and O(α2), which we will include in our

discussion as well.

The case of b̃b̃∗ production will not be treated here. Owing to b-tagging, bottom-

squarks can be experimentally distinguished from the squarks of the first two genera-

tions [32, 18, 33]. Moreover, in the case of b̃b̃∗ production the partonic process bb̄ → b̃b̃∗

exhibits specific features, like mixing between left- and right-handed b-squarks, mixing an-

gle renormalization [34], non-negligible Higgs-boson contributions and enhanced Yukawa

couplings for large vaues of tan β with the need of resummation [35]; other peculiarities

for massive initial-state partons are the proper counting of the orders of the perturbative

expansion [36, 37] and the appropriate choice of the factorization scale [38]. A dedicated

extra analysis for b-squark final states thus seems appropriate.

The outline of the paper is as follows. In section 2 we briefly summarize the various

tree-level contributions to the processes (1.1). Section 3 describes the structure of the

NLO terms of EW origin that contribute at O(α2
sα) and the strategy of the calculation.

Evaluation of the EW effects and their analysis for the LHC are presented in section 4 and

summarized in section 5. A list of Feynman diagrams and counter terms with specifica-

tion of renormalization, and technical details for the calculation of singular integrals are

collected in the appendix.

2. Tree-level contributions to squark pair production

In this section we list the lowest-order cross sections for the process (1.1) arising from

tree-level amplitudes at order O(α2
s), O(αsα) and O(α2). We will use the convention dσa,b

X

to denote the cross section for a partonic process X at a given order O(αa
sα

b) in the strong

and electroweak coupling constants. The parton luminosities for getting to the hadronic

cross section are given by the convolution

dLij

dτ
(τ) =

1

1 + δij

∫ 1

τ

dx

x

[

fi(x)fj

(τ

x

)

+ fj(x)fi

(τ

x

)]

, (2.1)

where fi(x) is the momentum distribution of the parton i in the proton (PDF).
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2.1 Squark pair production at leading order

The leading-order contribution to the process (1.1) is QCD based, of O(α2
s). In the notation

mentioned above, the differential cross section reads as follows,

dσLO
PP→Q̃aQ̃a∗(S) =

∑

q

∫ 1

τ0

dτ
dLqq

dτ
(τ) dσ2,0

qq→Q̃aQ̃a∗
(s) +

∫ 1

τ0

dτ
dLgg

dτ
(τ) dσ2,0

gg→Q̃aQ̃a∗
(s).

(2.2)

The sum runs over the quarks q = u, d, c, s. S and s = τS are the squared CM energies

of the hadronic process (1.1) and of the partonic subprocess, respectively. Moreover, with

the squark mass mQ̃,a, the threshold value τ0 is determined by τ0 = 4m2
Q̃,a

/S.

dσ2,0

qq→Q̃aQ̃a∗
and dσ2,0

gg→Q̃aQ̃a∗
denote the O(α2

s) differential cross sections for the

partonic processes

q(p1) q(p2) → Q̃a(k1) Q̃a∗(k2), (2.3)

g(p1) g(p2) → Q̃a(k1) Q̃a∗(k2), (2.4)

respectively, which are obtained from the Feynman diagrams in figure 11 of appendix A.

Explicit expressions for these leading-order cross sections can be found in refs. [19, 22, 23].

Owing to flavour conservation in SUSY QCD, the diagram with the exchange of a gluino

in the t channel contributes only if q = Q.

2.2 Tree-level electroweak contributions of O(αsα) and O(α2)

The O(αsα) and O(α2) contributions to the process (1.1), involving electroweak terms, can

be written as follows,

dσew,LO

PP→Q̃aQ̃a∗X
=
∑

q

∫ 1

τ0

dτ

{

dLqq

dτ
(τ)
(

dσ1,1

qq→Q̃aQ̃a∗
+ dσ0,2

qq→Q̃aQ̃a∗

)

+
dLγg

dτ
(τ) dσ1,1

γg→Q̃aQ̃a∗

}

.

(2.5)

The parton cross section dσ0,2

qq→Q̃aQ̃a∗
is obtained squaring the tree-level electroweak dia-

grams depicted in figure 12 of appendix A. The diagram with t-channel neutralino ex-

change contributes only if q = Q, and the diagram with chargino exchange appears only if

q′ = Q, q′ being the SU(2) partner of the quark q, since we treat the CKM matrix as unity.

dσ1,1

qq→Q̃aQ̃a∗
originates from interference between the aforementioned tree-level electroweak

diagrams and the tree-level QCD graphs of figure 11. Analytical expressions for these cross

sections can be found in ref. [27].

As a new element at O(αsα), photon–gluon fusion occurs as a further partonic process,

γ(p1) g(p2) → Q̃a(k1) Q̃a∗(k2). (2.6)

The corresponding cross section, with t = (p1 − k1)
2,

dσ1,1

γg→Q̃aQ̃a∗
=

dt

16πs2

∑

|M0
γg→Q̃aQ̃a∗|2, (2.7)
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contains the spin- and color-averaged squared tree-amplitudes from the diagrams in fig-

ure 13,

∑

|M0
γg→Q̃aQ̃a∗|2 = 16π2 ααseQ̃

m4
Q̃,a

(m4
Q̃,a

+ s2) + tu(tu − 2m4
Q̃,a

)

(t − m2
Q̃,a

)2 (u − m2
Q̃,a

)2

with u = (p1 − k2)
2, and the electric charge eQ̃ of the squark Q̃. The presence of photons

in the proton follows from including NLO QED effects in the evolution equations for the

PDFs. The photon PDF is part of the publicly available PDF set of [39]; together with

the gluon PDF, the γg luminosity entering (2.5) is built according to eq. (2.1).

3. Virtual and real O(α2

s
α) corrections

In this section we describe the computation of the O(α2
sα) corrections to the process (1.1)

arising from loops and from photon/gluon bresmsstrahlung. The corresponding contribu-

tions to the hadronic cross section are expressed in obvious notation,

dσew,NLO

PP→Q̃aQ̃a∗X
=

∫ 1

τ0

dτ
dLgg

dτ
(τ)

(

dσ2,1

gg→Q̃aQ̃a∗
+ dσ2,1

gg→Q̃aQ̃a∗γ

)

+
∑

q

{

∫ 1

τ0

dτ
dLqq

dτ
(τ)
(

dσ2,1

qq→Q̃aQ̃a∗
+ dσ2,1

qq→Q̃aQ̃a∗γ
+ dσ2,1

qq→Q̃aQ̃a∗g

)

+

∫ 1

τ0

dτ

[

dLqg

dτ
(τ)dσ2,1

qg→Q̃aQ̃a∗q
+

dLqg

dτ
(τ)dσ2,1

qg→Q̃aQ̃a∗q

]

}

. (3.1)

Other bremsstrahlung contributions to the hadronic cross section are of the type

γ(p1) q(p2) → Q̃a(k1) Q̃a∗(k2) q(k3), γ(p1) q(p2) → Q̃a(k1) Q̃a∗(k2) q(k3). (3.2)

We will not consider this class of processes here; they are further suppressed by an addi-

tional factor αs with respect to process (2.6), and thus negligible.

Diagrams and corresponding amplitudes are generated using FeynArts [40, 41]. The

algebraic treatment and numerical evaluation of loop integrals is performed with support

of FormCalc and LoopTools [42, 43]. IR singularities are regularized by a small photon

mass, while quark masses are kept as regulators for the collinear singularities.

3.1 Gluon fusion with electroweak loops

The first class of corrections entering eq. (3.1) are the O(α2
sα) electroweak virtual contri-

butions to gg fusion (2.4), given by the partonic cross section

dσ2,1

gg→Q̃aQ̃a∗
=

dt

16πs2

∑

2Re {M0
gg→Q̃aQ̃a∗ M1,ew

gg→Q̃aQ̃a∗
}, (3.3)

M0 is the tree level gg amplitude (figure 11), and M1,ew is the one-loop amplitude with

EW insertions in the QCD-based gg tree diagrams. These loop diagrams do not depend

on the flavour of the final squark and thus they are identical to those listed in [30] for the

particular case of Q̃ = t̃. We therefore do not repeat them here.
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In order to get rid of the UV divergences we have to include the proper counterterms

for one-loop renormalization. Their explicit expressions in terms of the renormalization

constants can be found in appendix B. In the case of the gluon-fusion subprocess we have

to renormalize the squark sector only. We use the on-shell scheme [30, 44, 34], where

the independent parameters for a squark isospin doublet1 are chosen to be the masses of

the two up-squarks, the mass of one of the two down-squarks, and the two mixing angles

(which, however are irrelevant for the light-quark squarks where mixing can be neglected).

The actual expressions for the renormalization constants are also given in appendix B.

Notice that part of the virtual corrections to squark pair production are loop diagrams

for the gluon-gluon-H0 vertex, with the heavy neutral MSSM Higgs boson H0. These

terms become resonant when mH0 ≥ 2mQ̃,a and have to be considered a contribution to

the process of H0 production via gluon fusion with the subsequent decay H0 → Q̃aQ̃a∗,

rather than an electroweak loop correction. We will not consider scenarios in which such

resonances occur.

3.2 Gluon fusion with real photon emission

The IR singularities arising from virtual photons in (3.3) are cancelled by including brems-

strahlung of real photons at O(α2
sα),

g(p1) g(p2) → Q̃a(k1) Q̃a∗(k2) γ(k3) , (3.4)

according to the diagrams depicted in figure 14. The integral over the photon phase space

is IR divergent in the soft-photon region, i.e. for k0
3 → 0, and cancels the corresponding

virtual singularities when added to the virtual contributions according to eq. (3.1).

For the technical treatment of photon-momentum integration and isolation of diver-

gences we apply two different procedures: the methods of dipole subtraction and of phase

space slicing. In the dipole subtraction approach, one has to add and subtract an auxiliary

function to the differential cross section that matches pointwise the singuilarities and is

easy enough to be integrated analytically; the integral over the subtracted cross section is

convergent and can be done numerically. Due to the universality of the soft singularities

general expression for these functions are available. In particular we use the expressions

given in ref. [45]. Although the formulae quoted in this reference apply to processes involv-

ing fermions only, they can be generalized to processes with charged bosons owing to the

universal structure of the IR singularities.

The phase space slicing technique restricts the phase space integration to the region

with a minimum photon energy ∆E = δs
√

s/2. The integration over this region is thus

convergent and can be performed numerically. The complementary integral over the sin-

gular region with k3 < ∆E can be done analytically in the eikonal approximation [46],

which is a good approximation if the cut δs is sufficiently small. More details are given

in appendix C. Comparison between the two methods provides a non trivial check of the

computation. As illustrated in figure 1, the two methods yield results which are in good

numerical agreement.

1Due to SU(2) invariance, mass renormalization of the different squarks from the same SU(2) doublet is

correlated and has to be performed simultaneously.
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Figure 1: Lowest order partonic cross sections for the process gg → ũLũL∗γ (first panel), uu →
ũLũL∗γ (second panel), uu → ũLũL∗g (third panel) and ug → ũLũL∗u (fourth panel), computed

with the two different methods. ∆ is defined as ∆ = σSlicing − σDipole. The error bars represent the

integration uncertainty. The SUSY parameters are those of the SPS1a′ point [55].
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3.3 qq̄ annihilation with electroweak and QCD loops

The structure of the parton processes of qq̄ annihilation at higher order is more involved and

requires a simultaneous treatment of electroweak and QCD loops. The virtual contributions

of one-loop order to the partonic cross section is given by the interference of tree-level and

loop amplitudes,

dσ2,1

qq→Q̃aQ̃a∗
= (3.5)

dt

16πs2

∑

{

2Re{M0,qcd∗
qq→Q̃aQ̃a∗

M1,ew

qq→Q̃aQ̃a∗
} + 2Re{M0,ew∗

qq→Q̃aQ̃a∗
M1,qcd

qq→Q̃aQ̃a∗
}
}

,

where M0,qcd (M0,ew) is the amplitude related to the tree-level QCD (EW) diagrams de-

picted in figure 11 (12). M1,ew is the one-loop amplitude arising from the EW corrections

to the QCD tree-level diagrams and the QCD corrections to the EW tree-level diagrams.

Finally, M1,qcd is the one-loop amplitude corresponding to the QCD corrections to the

QCD tree-level diagrams.

The diagrams entering M1,ew are displayed in figures 15–17 of appendix A. They also

contain the diagrams with counterterm insertions required for renormalization and cancel-

lation of UV divergences. The counterterms and the necessary renormalization constants

can be found in appendix B. Besides squark renormalization, also quark renormalization

is needed.

M1,qcd can be obtained from the Feynman diagrams in figure 18 of appendix A, in-

cluding the proper counterterms. Besides renormalization of the squark sector, we have

to renormalize also the gluino mass, the strong coupling gs, and the quark–squark–gluino

coupling ĝs, which is related to gs via supersymmetry. The strong coupling constant is

renormalized in the MS scheme, modified according to ref. [24] in order to decouple heavy

particles (top, gluino, squarks) from the running of αs. For the non-standard loop contri-

butions, this procedure is equivalent to the “zero-momentum subtraction” used in ref. [47].

Since dimensional regularization violates supersymmetry in higher orders, a finite differ-

ence between ĝs and gs is encountered at one-loop order. Supersymmetry is restored by

shifting the renormalization constant for ĝs by the corresponding finite amount, which

means an unsymmetric renormalization of ĝs and gs. More details and the specification of

the counterterms can be found in appendix B.

3.4 qq̄ annihilation with real photon emission

The diagrams in figure 19 of appendix A constitute the generic amplitude for photon

bremsstrahlung at O(α2
sα) in the qq̄ annihilation channel,

q(p1) q(p2) → Q̃a(k1) Q̃a∗(k2) γ(k3) . (3.6)

The corresponding cross section is singular both in the IR soft-photon region and in the

collinear region (e.g. whenever k3pi → 0). Although IR singularities cancel in sufficiently

inclusive observables, collinear singularities from initial-state radiation remain and have to

be absorbed via factorization in the PDFs.
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The extraction of the singularities has been performed using the two different methods

described in section 3.2. In phase space slicing, in this case, we have to introduce a further

collinear cutoff δc on the angle between the photon and the radiating quark/antiquark. For

sufficiently small δc, the integral over the singular region can be performed analytically.

Explicit expressions can be found in appendix C. In figure 1 we visualize the comparison

between the two methods in the specific case of the partonic process uu → ũLũL∗γ as an

example.

3.5 qq̄ annihilation with real gluon emission

Finally, we have to take into account the class of qq̄ annihilation processes with real gluon

bremsstrahlung,

q(p1) q(p2) → Q̃a(k1) Q̃a∗(k2) g(k3) , (3.7)

from either EW-based (figure 20 a) or QCD-based Born diagrams (figure 20 b). This

class contributes to the cross section at O(α2
sα) through interference between the graphs

of figure 20 a and figure 20 b. The cross section exhibits singularities when the gluon

becomes soft or collinear to the initial-state quark/antiquark. The soft singularities cancel

against those from the virtual photon/gluon contributions in qq̄ annihilation, when added

along eq. (3.1), while remaining collinear singularities have to be absorbed in the PDFs by

factorization. IR and collinear singularities can be treated by mass regularization.

For applying the phase space slicing method, the eikonal current has to be modified

due to colour correlations after the emission of the soft gluon (see refs. [48 – 50] and ap-

pendix C for details). Colour correlation has to be taken into account also when using the

Dipole Subtraction Method; we modified the formulae of ref. [45] accordingly, following the

guidelines of ref. [48]. In figure 1 we illustrate the comparison between the two methods

also for gluon radiation, with good numerical agreement.

3.6 q(q̄) g fusion

A last class of partonic processes at the considered order is given by (anti-)quark-gluon

fusion,

q(p1) g(p2) → Q̃a(k1) Q̃a∗(k2) q(k3) ,

q(p1) g(p2) → Q̃a(k1) Q̃a∗(k2) q(k3) . (3.8)

This IR finite class contributes at O(α2
sα) through the interference between the diagrams of

figure 21 a and figure 21 b. Mass singularities arise when the incoming gluon and outgoing

(anti-)quark are collinear. These collinear divergences are again absorbed into the PDFs.

Their extraction has been performed using the two methods described above in section 3.2.

Explicit expressions for the cross section in the collinear region can be found in appendix C.

The actual expression of the subtraction function used in the Dipole Subtraction method

is obtained from the formulae in ref. [51]. Since those formulae are given there for the case

of photon–quark splitting we have to consistently redo the color algebra. In figure 1 we

show the agreement between the two methods for the example ug → ũLũL∗u.
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In specific cases of SUSY parameters, when kinematically allowed, the internal-state

gauginos can be on-shell. The poles are regularized by introducing the width of the cor-

responding gluino, neutralino, or chargino. Potential problems related to gauge invari-

ance [52] do not occur here.

3.7 Factorization of initial-state collinear singularities

The O(α2
sα) corrections to partonic cross sections contain universal initial-state collinear

singularities that can be absorbed into the PDFs choosing a factorization scheme where

singularities of relative order O(α), the lowest order PDF fi(x) for parton i (= q, q̄) is

related to the experimentally accessible distribution fi(x, µF ) via [53, 54]

fi(x) =

fi(x, µF )

{

1 +
αe2

i + αsCF

π

[

−1 + ln δs + ln2 δs +

(

ln δs +
3

4

)

ln

(

m2
i

µ2
F

)]

+
1

4

αe2
i

π
h(δs)

}

+

∫ 1−δs

x

dz

z
fi

(x

z
, µF

)

{

Pii(z)
αe2

i + CF αs

2π

[

ln

(

m2
i (1 − z)2

µ2
F

)

+ 1

]

+
αe2

i

2π
H(z)

}

+

∫ 1

x

dz

z
fg

(x

z
, µF

)

Pig(z)
αsTF

2π
ln

(

m2
i

µ2
F

)

, (3.9)

with the factorization scale µF , CF = 4
3 ,TF = 1

2 and the electric charge ei. The splitting

functions Pii, Pig are defined in the usual way,

Pii(z) =
1 + z2

1 − z
Pig(z) = z2 + (1 − z)2 , (3.10)

and the functions h and H are given by

h(δs) = 9 +
2π2

3
+ 3 ln δs − 2 ln2 δs, H(z) = Pii(z) ln

(

1 − z

z

)

− 3

2

1

1 − z
+ 2z + 3. (3.11)

The actual effect of the factorization of the initial collinear singularities is to substitute

fi(x) by fi(x, µF ) in the definition of the quark–antiquark luminosity (2.1) and thus to

obtain a further O(α2
sα) contribution to be added to eq. (3.1). This contribution reads:

∑

q

∫ 1

τ0

dτ
dLqq

dτ
(τ)

{(

2αe2
q

π
κsoft

q +
αe2

q

2π
h(δs)

)

dσ2,0

qq→Q̃aQ̃a∗
(s) +

2αsCF

π
κsoft

q dσ1,1

qq→Q̃aQ̃a∗
(s)

+

∫ 1−δs

x0

dz

[(

αe2
q

π
κcoll

q (z) −
αe2

q

π
H(z)

)

dσ2,0

qq→Q̃aQ̃a∗
(zs)+

αsCF

π
κcoll

q (z)dσ1,1

qq→Q̃aQ̃a∗
(zs)

]}

+
∑

q

∫ 1

τ0

dτ

[

(

dLqg

dτ
(τ) +

dLqg

dτ
(τ)

)
∫ 1

x0

dz Pqg(z)
αsTF

2π
ln

(

m2
q

µ2
F

)

dσ1,1

qq→Q̃aQ̃a∗
(zs)

]

,

(3.12)

where x0 = (4m2
Q̃,a

)/s, while κsoft
q and κcoll

q (z) are defined as

κsoft
q = ln δs + ln2 δs +

(

ln δs +
3

4

)

ln

(

m2
q

µ2
F

)

− 1, (3.13)
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parameter SPS1a′ SPS5 SU1 SU4

M1/2 250 GeV 300 GeV 350 GeV 160 GeV

M0 70 GeV 150 GeV 70 GeV 200 GeV

A0 −300 GeV −1000 GeV 0 −400 GeV

sign(µ) + + + +

tan β(MZ) 10.37 5 10 10

Table 1: Input parameters in the four benchmark scenarios.

κcoll
q (z) = Pqq(z)

[

ln

(

m2
q(1 − z)2

µ2
F

)

+ 1

]

.

The singularities in κcoll
q (z) cancel in the sum of the real corrections and of the contribu-

tion (3.12), as can be easily checked using the analytic expressions of dσ2,1

qq→Q̃aQ̃a∗γ
and

dσ2,1

qq→Q̃aQ̃a∗g
in the collinear regions [see eqs. (C.4) and (C.8) of appendix C]. The re-

maining singularities of the real corrections are exactly cancelled against those in κsoft
q and

in the virtual corrections. The mass singularities in the last line of eq. (3.12) are can-

celled by those of dσ2,1

qg→Q̃aQ̃a∗q
and dσ2,1

qg→Q̃aQ̃a∗q
, as can be inferred from the their analytic

expressions in the collinear region [eq. (C.9) of appendix C].

For the calculation of hadronic observables we use the MRST2004qed parton dis-

tribution functions [39]. Factorization and renormalization scales are chosen as equal,

µR = µF = mQ̃a.

4. Numerical Analysis

For the numerical evaluation and for illustration of the EW effects, we choose four different

benchmark scenarios: the point SPS1a′ suggested by the SPA convention [55], the snowmass

point SPS5 [56] characterized by light stops, and two of the points chosen for detector

simulation in the ATLAS “Computing System Commissioning” exercise [57]: the point

SU1 in the coannihilation region, and the point SU4 characterized by light SUSY particles.

The input parameters M1/2, M0, A0, defined at the GUT scale, and tan β are put together

in table 1. The MSSM input for the actual calculation is obtained with the help of the

program SPheno [58], together with the program SuSpect [59] as a cross check. The pole

masses of the squarks of the first generation obtained with the two different codes are

shown in table 2. Since the quarks of the first two generations are treated as massless,

same-chirality and same-isospin squarks are degenerate, therefore we do not show the

masses of the squarks belonging to the second generation. The difference between the

masses provided by the two codes is below 1%. The different inputs given by the two codes

give rise to a differences in the total cross section of the order of 2 − 3%. The standard

model parameters are taken from ref. [60].

We introduce the following conventions:

• We will refer to the sum of O(αsα), O(α2) and O(α2
sα) contributions as “the EW

contribution”.
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SPS1a′ SPS5 SU1 SU4

mũ,R 548.1 660.3 739.7 412.6

(545.6) (657.4) (736.3) (411.2)

mũ,L 565.3 681.5 765.6 420.3

(562.0) (677.5) (760.7) (418.6)

md̃,R 547.9 659.2 738.0 413.9

(545.4) (656.9) (734.6) (412.5)

md̃,L 570.7 685.5 769.6 427.5

(567.5) (681.8) (764.7) (425.8)

Table 2: Pole masses (in GeV) of the squarks of the first generation in the various SUSY scenarios.

They are obtained using SPheno [58]; those computed with SuSpect [59] are quoted inside the

brackets for comparison.

• We will use the quantity δ to denote the relative EW contribution, defined as δ =

(ONLO −OLO)/OLO, where O is a generic observable and ONLO is the sum of the LO

in eq. (2.2) and the EW contribution.

4.1 Different squark species

Electroweak interactions depend on the hypercharge of the squarks, hence the production

cross sections are flavour and chirality dependent. In this subsection we will study the

production of four squark species, focusing on the SPS1a′ point. Since the masses of

the light quarks can be neglected, the weak eigenstates of the squarks are also the mass

eigenstates; thus, in the following, the two squarks of a given flavour are distinguished by

means of their chiralities, Q̃a = Q̃L, Q̃R.

Dependence on squark flavour and chirality. In table 3 we show the integrated

hadronic cross section for the diagonal pair production of ũL, ũR, d̃L and c̃L. In the case

of the production of the squarks of the first generation there is a cancellation beetween

O(αsα) and O(α2) contributions. The overall O(αsα + α2) correction is negative and of

the same order of magnitude as the O(α2
sα) one. Since they have the same sign their effect

is enhanced. In the case of c̃L production the situation is different: O(αsα), O(α2), and

O(α2
sα) corrections are positive, O(α2

sα) contribution being the most important ones (see

also the discussion below).

As a general remark, the EW effects are always larger for left-handed squarks. For a

given chirality and generation, the EW contributions are more important in in the case of

up-type squarks. For comparison we also estimate the corresponding NLO QCD corrections

using the code PROSPINO [25]; they are positive, weakly dependent on the flavour of the

produced squarks, and of the order of 47 − 48%.

Figure 2 shows the relative EW contribution (right part) in the “cumulative invariant

mass distribution” σ(Minv), that is the cross section integrated up to the value Minv of the

squark–antisquark invariant mass. A common feature is that in the low invariant mass

region the NLO EW contribution is positive, rather steeply decreasing as the invariant
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ũRũR∗ ũLũL∗ d̃Ld̃L∗ c̃Lc̃L∗

O(α2
s) (36.83 ± 0.03)·10−2 (31.31 ± 0.01)·10−2 (25.89 ± 0.01)·10−2 (22.65 ± 0.01)·10−2

O(αsα) (−9.00 ± 0.01)·10−3 (−3.54 ± 0.01)·10−2 (−3.83 ± 0.01)·10−2 ( 2.82 ± 0.01)·10−3

O(α2) ( 2.42 ± 0.01)·10−3 ( 2.39 ± 0.01)·10−2 ( 3.20 ± 0.01)·10−2 ( 2.11 ± 0.01)·10−3

O(α2
sα) (−3.09 ± 0.05)·10−3 (−1.05 ± 0.01)·10−2 (−7.82 ± 0.07)·10−3 ( 5.89 ± 0.01)·10−3

δ(%) −2.6 −7.0 −5.5 4.8

Table 3: Total cross section for the diagonal pair production of different squark species in the

SPS1a′ scenario. Beside the LO contribution, of O(α2
s
), we show the yields of the different orders

contributing to the NLO EW corrections. Cross sections are given in pb. δ is defined according to

section 4.

mass increases, reaching the plateau at Minv ≥ 2000 GeV which corresponds to the total

cross section. The left part of figure 2 shows the relative size of the individual contribu-

tions arising from the various channels. The contribution from the gluon fusion channel is

always positive and dominates at lower values of Minv, wheras the qq annihilation channel

part is negative. Looking at the relative contributions of the different channels in the high

invariant mass region, which corresponds to the total cross section, one can understand

the origin of the different behaviour of the NLO EW corrections in the case of uLuL∗ and

cLcL∗ production. For up-squark pairs, the O(αsα) and O(α2
sα) terms are dominated by

the the qq̄ annihilation channels, which yield a negative contribution; for charm-squark

production, however, the O(αsα) [O(α2
sα)] corrections are dominated by the qγ fusion [gg

fusion] channel and thus positive This shows the key role played by the partonic processes

Q Q, Q′ Q′ → Q̃aQ̃a∗, where Q and Q′ belong to the same isospin doublet. Indeed, in

the case of uLuL∗ production their contribution is negative and the largest out of the qq̄

annihilation channels. In cLcL∗ production they are suppressed by the PDFs of the charm

and strange quarks and hence the contributions from the qq̄ annihilation channels are neg-

ligible. As a result the overall contribution to total cross section is negative at the level

of 5% for the left-handed up-squarks, while for the left-handed charm-squarks it is of the

same order of magnitude but positive.

The contribution of the gγ channel is independent on the squark chirality, deter-

mined only by the electric charge of the produced squarks, which makes the gγ channel

contribution for up-squark pair production four times bigger than that for down-squarks.

Owing to the mass degeneracy between same-chirality and same-isospin squarks the gg

fusion channel is independent on the generation of the produced squark.

The invariant mass distribution itself is displayed in figure 3 for the various squark

species, showing also the breakdown into the individual channels. For each squark species,

the EW contributions are positive in the low invariant mass region and become negative

for larger values of Minv, reaching the level of 15% for ũL squarks.
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Figure 2: Cumulative invariant mass distribution for different species of squark pairs, defined as

the cross section integrated up to Minv of the invariant mass of the squark-antisquark pair. The left

panels show the relative contributions from the various channels, the right ones show the complete

EW contribution. The SUSY parameter point corresponds to SPS1a′.
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Figure 3: Invariant mass distribution for different species of squark pairs, for the SUSY parameter

point corresponding to SPS1a′. The left panels show the relative contributions from the various

channels, the right ones show the complete EW contribution.
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Figure 4 contains the transverse momentum distribution of the squarks. Again, the

EW effects are more pronounced for left-handed chirality yielding more than 30% negative

contributions for large pT . As new feature, the LO EW contribution can be positive for low

pT , especially for the d̃L case, originating from the PDF-enhanced parton process uū →
d̃Ld̃L∗ through t-channel chargino exchange. This positive part is practically compensated

by the NLO O(α2
sα) contributions in the qq̄ annihilation channel.

Dependence on the squark masses. To study the dependence of the NLO EW con-

tributions on the mass of the squarks, we vary mũ,R, setting md̃,R = mũ,R and mũ,R =

mũ,L(1 + ε) with ε = 0.03, which is the value at the SPS1a′ point. The values are also

taken for the other generations as well as for the sleptons. The other parameters are kept

as in SPS1a′. Each parameter point was checked to satisfy the bounds on SUSY particles

from LEP [61, 62] and Tevatron [63], and the bound on the mass of the light Higgs bo-

son h0, which has been computed using FeynHiggs 2.5.1 [64 – 66]. Moreover, each point

fullfills the condition |∆ρ| < 0.025, where ∆ρ is the dominant squark contribution to the

electroweak ρ parameter.

The relative EW contributions are shown in figure 5 for the total cross section, for

each of the various squark types. The quantity ξ displayed in the right panel is the fraction

of each the gg fusion and the qq̄ annihilation channel in the total cross section, at leading

order O(α2
s). The qq̄ channel becomes more and more important as mũ,R increases. This

feature, already pointed out in ref. [19], is a consequence of the t-channel gluino exchange

diagrams. The increasing importance of qq̄ annihilation allows a better understanding

of the particular role of the NLO corrections to the qq̄ channel with increasing squark

masses. Especially for left-handed up- and down-squarks, the NLO EW contributions

become more important than the LO ones, with effects of more than 20%. In the charm-

squark production case qq̄ channel is subleading with respect to the gg and gγ fusion

channels due to the aforementioned suppression of charm and strange PDFs. The total

sum of the EW contributions is shown in the right panel of figure 5. For illustration, we

also give an estimate of the formal statistical uncertainty δstat = (LσNLO)−1/2, assuming a

luminosity L = 100 fb−1.

4.2 Different SUSY scenarios

Here we discuss the electroweak effects in the different SUSY scenarios mentioned above.

As a concrete example, we consider the production of ũL squarks, with the corresponding

masses listed in table 2.

In table 4 we show the total cross section for the aforementioned production process.

The LO contribution and the different orders entering the NLO EW corrections are shown

separately. As one can see the absolute value of the different contributions decreases as the

mass of mũ,L increases, while the relative yield of the NLO EW corrections increases with

the mass of the produced squarks. In the case of the SU1 scenario NLO EW corrections are

negative and of the order of 10%. The corresponding NLO QCD corrections are estimated

using the code PROSPINO [25]; they are of the order of 45 − 50%.
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Figure 4: Transverse momentum distribution for different species of squark pairs. Notations and

input parameters as in 3.
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Figure 5: Squark-mass dependence of the EW contributions. Total EW contribution (left), indi-

vidual contributions from the various channels (central). The panels in the right column show the

relative yield of the two channels that contribute at LO.
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SPS5 SU1 SU4

O(α2
s) (10.62 ± 0.01) · 10−2 (51.77 ± 0.02) · 10−3 (16.14 ± 0.01) · 10−1

O(αsα) (−1.37 ± 0.01) · 10−2 (−7.22 ± 0.01) · 10−3 (−1.45 ± 0.01) · 10−1

O(α2) ( 9.11 ± 0.01) · 10−3 ( 4.73 ± 0.01) · 10−3 ( 10.16 ± 0.01) · 10−2

O(α2
sα) (−4.83 ± 0.03) · 10−3 (−2.75 ± 0.02) · 10−3 (−2.61 ± 0.01) · 10−2

δ(%) −8.9 −10.1 −4.3

Table 4: Same as table 3 but focusing on ũLũL∗ production in different SUSY scenarios.

Figure 6 contains the cumulative invariant mass distribution, again with the individual

and the total EW contributions, which show a similar behaviour for all the chosen scenarios.

Also the differential invariant mass distribution, displayed in figure 7, has similar qualitative

features in all scenarios. At low values, the gluon fusion part dominates and renders the

total EW contribution positive. At larger values, the contributions from qq annihilation

turn the EW contribution to the negative region; thereby the NLO part is always of about

the same size as the LO part.

In figure 8 we show the transverse momentum distribution in the various cases. Again,

their shape depends only weakly on the scenario.

This general situation is only slightly changed when kinematical cuts are imposed,

as we find from repeating our analysis for an exemplary set of cuts on the transverse

momentum and on the rapidity of the two squarks,

pT > 150 GeV, |y| < 2.5.

The cut on the rapidity is not effective because the NLO EW contributions to the rapidity

distribution are very small for |y| > 2.5. More important is the cut on the transverse

momentum. It excludes the kinematical region where the largest part of the gluon channel

contribution comes from. Moreover, this cut suppresses also the contribution of the gγ

channel and enhances the influence of the qq channel by excluding the region with a positive

pT distribution. As a result, the negative EW contribution to the total cross section is larger

than without cuts, as one can see from figure 9.

Dependence on the gluino mass. Finally we study the dependence of the EW con-

tribution as a function of the mass of the gluino mg̃, with the other parameters kept fixed

according to the SPS1a′ point. Again, the parameter range is in accordance with the

phenomenological constraints described in the previous subsection 4.1. At LO, the gluon

fusion channel does not depend on the gluino mass, while the qq annihilation channel con-

tribution decreases with increasing mg̃, as displayed in figure 10. In the low mg̃ region the

two channel contribute equally to the production cross section, while gluon fusion becomes

dominant as the mass of the gluino increases. The relative EW contributions from the

various channels are flat, adding up to a total EW contribution from −7 to −3% for gluino

masses between 500 and 2000 GeV. Thereby, in qq̄ annihilation, both the tree-level term

O(αsα + α2) and the NLO corrections O(α2
sα), are practically of the same size.
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Figure 6: Cumulative invariant mass distribution for PP → ũLũL∗X in different SUSY scenarios.

Notations as in figure 2.
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Figure 7: Invariant mass distribution for PP → ũLũL∗X in different SUSY scenarios. Notations

as in figure 3.
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Figure 8: Transverse momentum distribution of the process PP → ũLũL∗X in different SUSY

scenarios. Notations as in figure 4.
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Figure 9: Same as figure 6, but with the kinematical cuts defined in section 4.2.
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Figure 10: Gluino mass dependence of the total (lower left) and of the individual (lower right)

EW contributions to the total cross section for PP → ũLũL∗X . The upper panel shows the relative

yield of the two channels that contribute at LO.

5. Conclusions

We have computed the O(α2
sα) NLO electroweak contributions to the production of flavour-

diagonal squark–anti-squark pairs in proton–proton collisions, in combination with the

electroweak LO tree-level contributions of O(αsα + α2).

We have performed an explicit study of the electroweak contributions for each case

of the four squark species in the first SU(2) doublet, with a numerical analysis for the

LHC. The electroweak effects can give rise to sizeable modifications in cross sections and

distributions, in particular for left-handed squarks. Thereby, the NLO terms are significant

and have to be considered together with the tree-level contributions. They show a strong

dependence on the squark masses, increasing their relative influence with the mass of the

squarks.

Moreover, we have investigated several SUSY benchmark scenarios and found that the

behaviour of the electroweak contributions is only weakly dependent on the scenario. Also

the gluino-mass dependence is weak. In summary, the electroweak contributions in squark-

pair production can reach 20–25% in size and are thus significant; about half is carried by

the NLO contributions. As a final remark we would like to mention that the NNLO QCD

contributions, of O(α4
s), can be expected to be of similar size.
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A. Feynman diagrams

In this appendix generic diagrams for the various contributions to the different channels

are shown. We choose the up-squark case as a specific example. In the following we will

use the label S0 (S) to denote all the neutral (charged) Higgs bosons, while V 0 = γ, Z.
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Figure 11: Tree-level QCD diagrams for qq → ũaũa∗ and for gg → ũaũa∗.
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ũa

γ
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ũa

ũa
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q

q

ũa
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ũa
g

d̃s
i

W

q

q

ũa

ũa
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ũa

g
d̃s

i
W

q

q

ũa
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ũa

q̃s

g̃

χ̃0
i

u

q

q

ũa
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Figure 15: One-loop EW diagrams for qq → ũaũa∗. The diagrams with counter terms can be

computed according to the Feynman rules in appendix B. The renormalization constants in the

counter terms have to be evaluated at O(α).
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ũa

ũa
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d ũa

d

d

ũa
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Figure 16: One-loop EW diagrams that enter only in the case of the process dd → ũaũa∗. The dia-

grams containing the counter terms can be computed according to the Feynman rules in appendix B.

The renormalization constants in the counter terms have to be evaluated at O(αs).
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ũa

V 0
g

u

u

u

u

ũa
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ũs u

u

u

ũa
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ũa

g̃

V 0

u ũa
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ũa

g̃

W

di d̃s
i

u

u

ũa
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ũa

g̃

ũs
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ũa
g̃

u

u

ũa
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Figure 17: One-loop EW diagrams that enter only in the case of the process uu → ũaũa∗. The

diagrams in the last row contain the counter terms listed in appendix B. The renormalization

constants in the quark–squark–gluino counter term have to be evaluated at O(α), the other ones

at O(αs).
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ũa

ũa

g
g

ũa
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ũa

ũa
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ũa

ũa
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ũa

ũa
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ũa

ũa
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Figure 18: One loop QCD diagrams for the process qq → ũaũa∗. These diagrams interfere with

those of figure 12 yielding O(α2
s
α) contributions. The diagrams containing counter terms can be

computed according to the Feynman rules listed in appendix B. The renormalization constants

appearing in the counter terms have to be evaluated at O(αs).
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ũa

γ

u

g̃

u

u

ũa
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Figure 19: O(α2
s
α) real photon emission in qq → ũaũa∗γ. The last four diagrams contribute only

if q = u.
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ũa

g

g
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ũa

q

q

ũa
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ũa

(a)

q

q

ũa
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ũa

g

χ̃0
i

u

u

u

ũa
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ũa

ũa
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ũa

d

d

ũa
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Figure 20: Diagrams for gluon bremsstrahlung from QCD (a) and EW (b) Born diagrams. They

contribute at O(α2
s
α) through QCD–EW interference
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ũ1

q
g q

g

ũ1
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ũ1

q

g

ũ1
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ũ1

q
q

g

u

g

ũ1
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ũ1

ũ1
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ũ1

χ̃i

(b)

Figure 21: QCD (a) and EW (b) Born diagrams for quark gluon fusion channels. Their interference

contributes at O(α2
sα).
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B. Counter terms and renormalization constants

Here we list the counter terms for renormalization of vertices and propagators in the one-

loop amplitudes for squark-pair production. For squarks of the first two generations, we

can neglect L-R mixing, and weak eigenstates are also mass eigenstates that can be dis-

tinguished by their chiralities a = L,R. The Feynman rules for the counter terms can be

expressed in terms of the field renormalization constants of quarks, squarks, gluons, and

gluinos, defined from the relation between bare and renormalized fields,

Ψbare
qa = Ψren

qa

(

1 +
1

2
δZqa

)

, Φbare

Q̃,a
= Φren

Q̃,a

(

1 +
1

2
δZQ̃,a

)

,

Gbare
µ = Gren

µ

(

1 +
1

2
δZG

)

, Ψbare
g̃ = Ψren

g̃

(

1 +
1

2
δZg̃

)

, (B.1)

together with the renormalization constants for the strong coupling gs, for the strong

Yukawa coupling ĝs, and for the squark masses, which are defined according to

gbare
s = gren

s (1 + δZg), ĝbare
s = ĝren

s (1 + δZĝ), m2 bare

Q̃,a
= m2 ren

Q̃,a
+ δm2

Q̃,a
. (B.2)

The actual expressions of the counterterms that are relevant for our squark-pair production

processes are given below.

• Vertex counter terms involving gauge bosons:

g

Qa˜

Qa˜

= −igs(δZQ̃,a + δZG

2 + δZg)T
C(k + k′)µ

g

g

Qa˜

Qa˜ = ig2
sδZQ̃,a(

1
3δC1C2 + fC1C2ATA)gµν

q

q

g
= −igs

[(

δZG

2 +δZg+δZqL

)

γµω−+

(

δZG

2 +δZg+δZqR

)

γµω+

]

TC

q

q

V0

= −ie[CV
− (q)δZqLγµω− + CV

+ (q)δZqRγµω+] V 0 = γ, Z

V0

Qa˜

Qa˜

= −ie[CV
− (Q̃)δaL + CV

+ (Q̃)δaR]δZQ̃,a(k + k′)µ V 0 = γ, Z
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k and k′ are the momenta of the squark and the antisquark, and they are fixed

according to the arrow. TC are the color matrices and fABC the structure constants

of the color group. We omit the color indices of fermions and sfermions. Moreover,

we define

Cγ
±(q) = eq, CZ

−(q) =
1

cW sW

(

I3
q − eqs

2
W

)

, CZ
+(q) = −sW

cW
eq , (B.3)

where sW and cW are sine and cosine of the electroweak mixing angle θW .

• Self energy counter terms:

Qa˜

Qa˜

= i[(p2 − m2
Q̃,a

)δZQ̃,a − δm2
Q̃,a

]

g̃

g̃
= i[(/p − mg̃)δZg̃ − δmg̃]

g

g
= i(pµpν − gµνp2)δZG

• Vertex counter terms involving gauginos:

Q

g̃

Qa˜

= −i gs√
2
[ ( δZQ̃,a + 2δZĝ + δZg̃ + δZQL ) δaL ω−−
( δZQ̃,a + 2δZĝ + δZg̃ + δZQR ) δaR ω+ ] TC

Q

g̃

Qa˜

= i gs√
2
[ ( δZQ̃,a + 2δZĝ + δZg̃ + δZQR ) δaR ω−−

( δZQ̃,a + 2δZĝ + δZg̃ + δZQL ) δaL ω+ ] TC

Q

χ i
0˜

Qa˜

= ie[A−(Q) (δZQ̃,a + δZQL)δaL ω−+

A+(Q) (δZQ̃,a + δZQR)δaR ω+]

Q

χ i
0˜

Qa˜

= ie[A∗
+(Q) (δZQ̃,a + δZQR)δaR ω−+

A∗
−(Q) (δZQ̃,a + δZQL)δaL ω+]

Q’

χ i˜

Qa˜

= −ieB(Q′)
2sW

(δZQ̃,a + δZQ′L)δaL ω−
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Q’

χ i˜

Qa˜

= −ieB∗(Q′)
2sW

(δZQ̃,a + δZQ′L)δaL ω+

The Feynman rules involving Majorana particles follow the prescription of ref. [67];

in particular the fermion flow is fixed according to the arrow depicted in the quark

line. As usual, Q′ denotes the SU(2) partner of Q. The vertices involving neutralinos

contain the quantities

A+(Q) =
1√
2

eQNi1

cW
, A−(Q) = − 1√

2

(

1

6

N∗
i1

cW
+ IQ

N∗
i2

sW

)

, (B.4)

where Nij is the mixing matrix of the neutralinos. B(Q′) can be expressed in terms

of the mixing matrices U and V of the chargino sector: B(Q′) = U∗
i1 [B(Q′) = V ∗

i1]

for up [down] type quarks.

The renormalization constants of the squark sector are fixed by on-shell conditions (see

also ref. [44, 34]),

δZQ̃,a = −Re

{

∂ΣQ̃,a(p
2)

∂p2

}

|p2=m2
Q̃,a

, δm2
Q̃,a

= Re

{

ΣQ̃,a(m
2
Q̃,a

)
}

,

δZQ̃′,a = −Re

{

∂ΣQ̃′,a(p
2)

∂p2

}

|p2=m2
Q̃′,a

, δm2
Q̃′,R

= Re

{

ΣQ̃′,R(m2
Q̃′,R

)
}

, (B.5)

where (Q̃, Q̃′) is either of the two SU(2) doublets (ũ, d̃), (c̃, s̃), and ΣQ̃,a is the self energy

of the squark Q̃a. Due to SU(2) invariance the mass counter term of the left-handed

down-type squark is a dependent quantity,

δm2
Q̃′,L

= δm2
Q̃,L

− c2β δM2
W + 4M2

W c3
βsβ δtβ , (B.6)

(where cθ = cos θ, sθ = sin θ etc. for abbreviation). The counter term δtβ for tan β is fixed

in the DR scheme and can be written in the following way [68, 69],

δtβ =
1

2MZc2
β

Re
{

Σdiv

A0Z(m2
A0)
}

, (B.7)

where Σdiv denotes the divergent part of the A0Z self energy in dimensional reduction. As

pointed out in [70], this process-independent condition is also gauge invariant. Furthermore,

the W mass counter term appears in (B.7), in the on-shell scheme given by

δM2
W = Re

{

ΣT
W (M2

W )
}

, (B.8)

where ΣT
W is the transverse part of the W self energy.
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The field renormalization constants of the quarks are obtained via on-shell conditons as

follows [71],

δZqa = −Re
{

Σqa(m
2
q)
}

−m2
qRe

{

∂

∂p2

(

ΣqL(p2) + ΣqR(p2) + 2ΣqS(p2)
)

}

|p2=m2
q

(a = L,R)

(B.9)

with the scalar coefficients in the Lorentz decomposition of the self energy,

Σq(p
2) = /pω−ΣqL(p2) + /pω+ΣqR(p2) + mqΣqS(p2). (B.10)

Also in the gluino sector we determine the renormalization constants by on-shell conditions,

δmg̃ =
1

2
Re
{

mg̃ (Σg̃L(m2
g̃) + Σg̃R(m2

g̃) + 2Σg̃S(m2
g̃))
}

(B.11)

δZg̃ = −Re
{

Σg̃L(m2
g̃)
}

− m2
g̃ Re

{

∂

∂p2

(

Σg̃L(p2) + Σg̃R(p2) + 2Σg̃S(p2)
)

}

|p2=m2
g̃

.

The renormalization of the strong coupling deserves some particular care. As mentioned in

section 3.3 the strong coupling gs is renormalized in the MS scheme decoupling the heavy

particles (top, gluino and squarks) from its runnning. Accordingly, the renormalization

constant for gs in (B.2) is given by [24]

δZg = −αs

4π





3

2
∆ + ln

(

m2
g̃

µ2

)

+
∑

Q̃,a

1

12
ln

(

m2
Q̃,a

µ2

)

+
1

3
ln

(

m2
t

µ2

)



 (B.12)

where ∆ = 2/ǫ − γE + ln(4π). The treatment of UV divergences in dimensional regular-

ization violates supersymmetry at the one-loop level, introducing a mismatch between the

strong Yukawa coupling and gs. In order to restore supersymmetry in physical amplitudes,

cancellation of this extra term is required, which at one-loop order can be achieved by

modifying the renormalization constant for ĝs to be different from δZg:

δZĝ = δZg +
αs

3π
. (B.13)

For completeness we quote also the field renormalization constant of the gluon in eq. (B.1),

δZG = 2δZg . (B.14)

At O(α2
sα) it enters only the one-loop amplitude M1,qcd

qq→Q̃aQa∗
, but since the gluon only

appears in internal lines, δZG is cancelled in the sum of self energy and vertex counter

terms.

C. Bremsstrahlung integrals

Here we list the IR and collinearly singular integrals that appear in the phase space integra-

tion of the bremsstrahlung processes, with either photons or gluons radiated. In the phase

space slicing method, cuts are imposed: ∆E = 2δs
√

s on the energy of the emitted pho-

ton (gluon), and an angle cut δc on the angle between the photon/gluon and the radiating
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quark via cos θ > 1−δc. The phase space is thus split into a soft and a collinear region that

are singular and a complementary non-singular region, which is integrated numerically.

The integration over the soft region can be performed analytically, regularizing the

singularities by small masses for the photon (gluon) and the light quarks. With the help

of explicit formulae for the IR integrals [71, 72], one obtains the factorized expressions for

the cross section given below. In the collinear region, the integration can be expressed as

a convolution of the lowest-order cross section and a radiator function.

Process gg → Q̃aQ̃a∗γ. This process is affected by IR singularities only. Integrated

over the soft region, the differential cross section reads as follows,

dσ2,1

gg→Q̃aQ̃a∗γ
= −α

π
e2
Q̃
(δF − δFF ) dσ2,0

gg→Q̃aQ̃a∗
(C.1)

where

δF = ln

(

4∆E2

λ2

)

+
1

β
ln

(

1 − β

1 + β

)

δFF =
2

β

(

s − 2m2
Q̃,a

s

)

[

1

2
ln

(

1 + β

1 − β

)

ln

(

4∆E2

λ2

)

− Li2

(

2β

1 + β

)

− 1

4
ln2

(

1 + β

1 − β

)]

.

λ is the infinitesimal mass regularizing the IR divergencies, and β =
√

1 − (4m2
Q̃,a

/s).

Process qq → Q̃aQ̃a∗γ. The differential cross section integrated over the soft region

can be expressed in terms of the O(α2
s) cross section for qq → Q̃aQ̃a∗ and a IR-singular

factor,

dσ2,1

qq→Q̃aQ̃a∗γ
= −α

π

[

e2
q(δI − δII) + e2

Q̃
(δF − δFF ) + eqeQ̃(δIF − δFI)

]

dσ2,0

qq→Q̃aQ̃a∗
(C.2)

where eq = 2
3 if q = u, c and eq = −1

3 otherwise. Furthermore,

δI = ln

(

4∆E2

λ2

)

+ ln

(

m2
q

s

)

, (C.3)

δII = ln

(

s

m2
q

)

ln

(

4∆E2

λ2

)

− π2

3
− 1

2
ln2

(

s

m2
q

)

,

δIF = ln

(

m2
qm

2
Q̃,a

(t − m2
Q̃,a

)2

)

ln

(

4∆E2

λ2

)

+
1

2

[

ln2

(

m2
q

s

)

− ln2

(

1 − β

1 + β

)

]

+
π2

3

+2Li2

(

1+
st

(m2
Q̃,a

− t)2

)

−2

[

Li2

(

1+
(1 − β)st

2m2
Q̃,a

(m2
Q̃,a

− t)

)

+ Li2

(

1+
(1 + β)st

2m2
Q̃,a

(m2
Q̃,a

− t)

)]

;

δFI can be obtained from δIF by the substitution t → u.

The differential cross section integrated over the collinear region can be written in

terms of a convolution integral,

dσ2,1

qq→Q̃aQ̃a∗γ
(s) =

αe2
q

2π

∫ 1−δs

x0

dz

{[

ln

(

sδ2
c

4m2
q

)

− 1

]

Pqq(z) + (1 − z)

}

dσ2,0

qq→Q̃aQ̃a∗
(zs),

(C.4)
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with x0 = (4m2
Q̃,a

)/s and the quark splitting function Pqq(z) from eq. (3.10).

Process qq → Q̃aQ̃a∗g. The singularities affecting this radiative process are Abelian-

like, similar to the case of photon radiation, and thus can be treated by mass regularization

as well. The differential cross section integrated over the soft region can also be expressed

in terms of O(αsα) contributions to the cross section for qq → Q̃aQ̃a∗, but only together

with a rearrangement of the color structure. The emission of a gluon as a colored particle

leads to color correlations in the eikonal current, which can be taken into account following

the prescription of ref. [48], yielding the result

dσ2,1

qq→Q̃aQ̃a∗g
= −αs

2π

{[

CF

(

2δI +2δF

)

+2
(

CF +
1

N

)

δFI +
1

N

(

δII +δFF −δIF

)]

dσ1,1

qq→Q̃aQ̃a∗

−
[

δFI − δIF

]

dσ̄1,1

qq→Q̃aQ̃a∗
−
[

δFI + δII + δFF

]

dσ̃1,1

qq→Q̃aQ̃a∗

}

, (C.5)

with CF = 4
3 and N = 3. In order to specify the color-modified “cross sections” dσ̄ and dσ̃,

we first separate the tree-level amplitudes for qq → Q̃aQ̃a∗ into color factors and reduced

matrix elements, according to the s- and t-channel diagrams in figure 11:

M0,qcd [c1,c2,c3,c4]

qq→Q̃aQ̃a∗
=
∑

C

(

TC
c2c1T

C
c3c4M

0,qcd (s)

qq→Q̃aQ̃a∗
+ TC

c3c1T
C
c2c4M

0,qcd (t)

qq→Q̃aQ̃a∗

)

,

M0,ew [c1,c2,c3,c4]

qq→Q̃aQ̃a∗
= δc1c2δc3c4M0,ew (s)

qq→Q̃aQ̃a∗
+ δc1c3δc2c4M0,ew (t)

qq→Q̃aQ̃a∗
(C.6)

where TC are the color matrices in the fundamental representation. With this notation we

can write for the color-rearranged contributions,

dσ̄1,1

qq→Q̃aQ̃a∗
=

dt

16πs2

1

N2
2Re

{(

M0,qcd [c1,c2,c1,c3]

qq→Q̃aQ̃a∗

)∗
M0,ew [c4,c2,c4,c3]

qq→Q̃aQ̃a∗

}

,

dσ̃1,1

qq→Q̃aQ̃a∗
=

dt

16πs2

1

N2
2Re

{(

M0,qcd [c1,c1,c2,c3]

qq→Q̃aQ̃a∗

)∗
M0,ew [c4,c4,c2,c3]

qq→Q̃aQ̃a∗

}

, (C.7)

where color summation has to be performed over each pair of equal indices. On top, average

over the initial helicities is assumed. Owing to the particular color structure, dσ̃ is different

from zero only if q = Q.

The differential cross section integrated over the collinear region can be written in

terms of a convolution integral similar to eq. (C.4),

dσ2,1

qq→Q̃aQ̃a∗g
(s) =

αsCF

2π

∫ 1−δs

x0

dz

{[

ln

(

sδ2
c

4m2
q

)

− 1

]

Pqq(z) + (1 − z)

}

dσ1,1

qq→Q̃aQ̃a∗
(zs) ,

(C.8)

with dσ1,1

qq→Q̃aQ̃a∗
instead of dσ2,0

qq→Q̃aQ̃a∗
.

Processes qg → Q̃aQ̃a∗q and qg → Q̃aQ̃a∗q. These processes exhibit singularities

when the final (anti-)quark is emmitted off the gluon in the collinear region. In that region

the differential cross section can be written, in analogy to [54], as follows,

dσ2,1

qg→Q̃aQ̃a∗q
(s) =

αsTF

2π

∫ 1

x0

dz

{

ln

(

s(1 − z)2δ2
c

4m2
q

)

Pqg(z) + 2z(1 − z)

}

dσ1,1

qq→Q̃aQ̃a∗
(zs)
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dσ2,1

qg→Q̃aQ̃a∗q
(s) =

αsTF

2π

∫ 1

x0

dz

{

ln

(

s(1 − z)2δ2
c

4m2
q

)

Pqg(z) + 2z(1 − z)

}

dσ1,1

qq→Q̃aQ̃a∗
(zs)

(C.9)

with the splitting function Pqg from eq. (3.10).
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[70] A. Freitas and D. Stöckinger, Gauge dependence and renormalization of tan β in the MSSM,

Phys. Rev. D 66 (2002) 095014 [hep-ph/0205281].

[71] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level

and results for W physics at LEP-200, Fortschr. Phys. 41 (1993) 307 [arXiv:0709.1075].

[72] G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365.

– 41 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC46%2C43
http://arxiv.org/abs/hep-ph/0511344
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC25%2C113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC25%2C113
http://arxiv.org/abs/hep-ph/0202233
http://paige.home.cern.ch/paige/fullsusy/romeindex.html
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C153%2C275
http://arxiv.org/abs/hep-ph/0301101
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C176%2C426
http://arxiv.org/abs/hep-ph/0211331
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG33%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG33%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC47%2C547
http://arxiv.org/abs/hep-ex/0602042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB499%2C67
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB499%2C67
http://arxiv.org/abs/hep-ex/0011047
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB638%2C119
http://arxiv.org/abs/hep-ex/0604029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C124%2C76
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C124%2C76
http://arxiv.org/abs/hep-ph/9812320
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC28%2C133
http://arxiv.org/abs/hep-ph/0212020
http://jhep.sissa.it/stdsearch?paper=02%282007%29047
http://arxiv.org/abs/hep-ph/0611326
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB291%2C278
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC67%2C495
http://arxiv.org/abs/hep-ph/9409375
http://arxiv.org/abs/hep-ph/0202166
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C095014
http://arxiv.org/abs/hep-ph/0205281
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C41%2C307
http://arxiv.org/abs/0709.1075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB153%2C365

